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Introduction

The search of oil and gas are based on algorithms that generate tomographies of
the earth’s subsurface using seismic waves.
They are designed for domains with straight boundaries, but the oilfields are also
found under rugged regions

Figure: oil trap

Figure: Cusiana oilfield in Colombia

Figure: Oilfields in complex topography

(ITM) Short version 2015 2 / 35



Introduction

The procedure to generate images of the subsurface is to compare the real data
collected by the geophones with the synthetic data generated by computational
simulations: the solution of the wave equation. A cartesian mesh can not be well
adapted to the geometry of the problem when the surface in not flat. Because of
this, distorsions in the image are generated.

Figure: image formed with a cartesian mesh
(C. Li y J.P. Huang,2014)

Figure: image formed from a generalized
coordinate system (Shragge, J., 2014)
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Introduction

Figure: example of tomography with a flat
upper boundary Figure: example of velocity model for

complex topography

(ITM) Short version 2015 4 / 35



State of the art

The algorithms that generate the images are based on the comparison of the data
received by the geophones (after the seismic waves are reflected in the different
structures of the subsurface) with the simulated data.

Figure: The construction of images of the earth’s subsurface is based on the reflection of
seismic waves
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State of the art - Cartesian modeling

Figure: Seismic wavefronts in t = 1, 100, 200, 300, 400y500 milliseconds
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State of the art - Cartesian modeling

Figure: Synthetic seismogram for a model of 2 layers of constant propagation velocities

Figure: To search the right velocity model the difference of the synthetic en real
seismograms is minimized
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Theory of seismic tomography
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Theory of seismic tomography
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Seismic modeling in complex topography

The problem of the propagation of a seismic wave in complex topography can be
transformed into the problem of propagation in a rectangular mesh by means of a
coordinate transformation

[
x1
x2

]
=

 ξ1

ξ2 + τ(ξ1)

 (1)

where x1 and x are the coordinates in the physical domain whose upper boundary
is complex (not flat) and ξ1 and ξ2 are the coordinates of the rectangular domain.
The function τ(x1) = τ(ξ1) represents the upper edge of the physical domain,
that is, the shape of the mountain.
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Seismic modeling in complex topography

This transformation allows to map the rectangle to practically any topography. A
uniform mesh in generated in the rectangle. The mesh lines are mapped into the
physical domain, generating in this way the curved lines conformal to the
topography

Figure: Uniform grid used for the
computational domain

Figure: curved grid used for the physical
domain
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Wave equation in generalized coordinates

The rectangular mesh is discretized in the usual way. In the new coordinate
system that is denoted ξ1 and ξ2 the wave equation is[

∇2 − 1

v2

∂2

∂t2

]
u(ξ1, ξ2) = f (ξ1, ξ2) (2)

with

∇2 =
1√
|g |

∂

∂ξi

(
g ij
√
|g | ∂

∂ξj

)
i , j = 1, 2, 3 (3)

where

gij =
∂xk
∂ξi

∂xk
∂ξj

(4)

are the metric coefficients and |g | is the absolute value of the determinant.
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Example: 2 layers model

Figure: 2 velocities model
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Seismic modeling in complex topography

Figure: Seismic wavefront
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Seismic modeling in complex topography

In the rectangular domain seismograms can be generated just by taking a sample
of the field in ξ = cte, tha corresponds to a sample of the field over the upper
edge of the physical domain.

Figure: seismogram obtained in ξ = 4 in the rectangular domain
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Results for tomography in a curved mesh

The FWI algorithm was applied to the Canadian Foothills SEG velocity model. A
synthetic model for a zone in British Columbia (Canada) that presents several
common geological features of that region.

Figure: Canadian Foothills SEG velocity model
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Results for tomography in a curved mesh

Figure: Original Canadian Foothills SEG
model

Figure: Model used to start the FWI
algrithm
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Results for tomography in a curved mesh

Figure: Model used to start the FWI
algrithm

Figure: Final velocity after 200 iterations
using a 5hz source
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Results for tomography in a curved mesh

Figure: Final model after 200 iterations
using a 5hz source

Figure: Final velocity after 200 iterations
using a 15hz source
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Results for tomography in a curved mesh

Figure: Final velocity after 200 iterations
using a 15hz source Figure: Original velocity model
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Convergence

Figure: Convergence of the FWI algorithm in Riemannian space
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Usual FWI

Figure: FWI in an Euclidian space for the Marmousi velocity model
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Usual FWI

Figure: FWI in an Euclidian space for the Marmousi velocity model
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Conclusions

FWI can be implemented in curved meshes just by modifying the laplacian.

When transforming from physical to computational domain the steps sizes in
time and space doesn’t change.

The algorithms also solves the problem of the near-surface imaging.

The transformantion can be applied to other wave equations using the chaing
rule for the derivatives.
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